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An optimal problem [ 1-6 ] is considered for a linear system of differ-
ential equations in which the integrals of the pth power (p > 1) of the
modulus of the control function are bounded.

1. Let the control system be described by the equation
9 _ Az + b()u() (1.1)

where x = {x,(t), ..., z,(¢t)} (the representative vector in the phase
space), the elements aikzt) (i=1, ..., n, k=1, ..., n) of the matrix
A(t), and the components b,(t) (i = 1, ..., n) of the vector b(t) are
continuous functions of time t.

We shall assume that the control function u(t) satisfies the condition

t
%}u(t) Pdr<<1 (p>1) (1.2)

ty

The optimal problem [ 1-6 ] consists of the following: among all con-
trol functions satisfying the condition (1.2), it is required to find
such a u(r, p) that a point moving along the trajectory of Equation
(1.1) will move from the initial point x(t;) = x, to the origin of the
coordinate system in the shortest time TTpg.

This time T(p) is called the optimal time of the transfer process.
The corresponding control u(r, p) is called the optimal control function.

The condition (1.2), with p = 2, corresponds to a limitation on the
mean power of the controlling reaction u(r). The investigation of the
given problem under the restriction (1.2) with arbitrary p > }, is of
importance in going over to the problem with the restriction that
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)<t (<< (1.3)

Below, in Section 2, it is proved that the optimal control u(r, p) for
the case of restriction (1.2), which is continuous, converges in measure
as p » = to the optimal control u(r) of the same problem under condition
(1.3). It is also shown that the function T(p), with p » =, has for a
bound the time of the optimal process under the condition (1.3).

This circumstance guarantees the possibility of obtaining an approxi-
mate solution of the optimal problem under condition (1.3) by reducing
it to the same problem under the restriction of condition (1.2). This
latter problem can be solved by the usual methods of the calculus of
variations as is well known.

Let us consider the space Lq(to, t) of the functions ¢(r) summable
with the exponent q:

t

S“P(T)iqd7<+ao (%+_%=1>

s

By the symbol A(t, q; ¢) we denote the norm of the function ¢(r).

This norm is defined in the following way:
¢

At g 9= ({lo) 7a)

to

1
q

As is shown in the work [7 ], the general form of linear functionals
f defined on the space L q(to, t) is given by

t

/@ =\e@n()d
t
Here, the function n(t) satisfies the inequality

A, p, )<+ o0

and the norm of the functional A(t, p, f) of the functional f is de-
fined by the equation

AL, p, N=A, p, )

The solution of Equation (1.1) has the form [8 ]
t
z(t) = F (t) xo + \F (t) F1(z)b(z)u (t)de
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where F(t) is the fundamental matrix of Equation (1.1) with B(t) = 0.
Therefore, if the point x(t) arrives at the origin of the coordinate
system at the time t, we have the following equation for the determina-

tion of ulr):
:

— 2y = {F @b u(mds (1.4)
ts
In other words, the optimal problem has been reduced to the problem
considered in the work [9 ]: among linear functionals f, defined on the

space Lq(t , t) it is required to find a function which will satisfy
condition ?1.2) and will be a solution of Equation (1.4).
We impose the following condition (A) on the equation (1.1). We assume

that the function y(r) defined by the relation
Y &)= (F(0)b(x)) (1.5)
vanishes only at isolated points r.

The symbol (IF~ *(r)b(r)) denotes the scalar product of the vector
I(I; = const, 1,2+ ..., + 1.2 £ 0) by the vector F~ L )b(r).

It is shown in the work [9 ] that Equation (1.4) has a solution if

a

Aty p, /) > (L, q) (r-(tl'—?):minA(t,q,'T) i (1zy) = — 1)
We note that if condition (A) is satisfied then the

min A (¢, ¢, y) with (lrg) =—1
is always attained [9 ], i.e. there exists a vector 1¢9) such that

min A (¢, q. 1) = A(t, ¢, 7'?) (1.6)

We shall call a function y (9 (r) which satisfies the condition (1.6)
a minimizing element of the space Lq(to, t) under the condition (Ixy)=
-~ 1.

Under fixed initial values x,, the function A(¢, ¢) is continuous and
strictly monotone in t. This fact was proved in the work [6 ] when ¢ = 1.
We shall not give a proof of this property of the function A(¢, q) when
g > 1, for it would be a repetition (with slight changes) of the proof
of the continuity and monotone nature of the function A(t, g) in t with
q = 1.

Hence, if there exists at least one value t for which the inequality
A{t, g) < 1 is satisfied then the optimal problem has a unique solution.
(One must take into consideration that the function A(¢, ¢q) is a
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decreasing function of ¢t [6]). The optimal control time is found, ob-
viously, from the relation A(t, ¢) = 1.

Let us assume that the inequality A(¢, q) <1 is valid, and let us
find the optimal control function ulr, p). Suppose that the function
y{@)(r) is the minimizing element under the condition (lxy) = - 1.

As is shown in the work [9 ], every minimizing element y{9(r) under
condition (lxy) = ~ 1 is an extremal element for the functional f whose
norm is A(t, gq). Hence, if y{?)(r) is a minimizing element under the
condition (lxy) = ~ 1, and if A(t, p, f) = A(¢t, g), then we have

t
— @) =1={10@uE@d =2 A, ¢, v (@7

We write down Holder’s inequality for the functions y‘?(r) and u(r):

t

V10 @uEid <A, g 1A E P (1.8)

’@
From (1.7) and (1.8) it follows that the control vector u(r) has the
following property:
signu (1) = sign 19 (1)

Strictly speaking, this relation holds almost everywhere on the interval
t, <1 < t.
0

The equality sign can hold in (1.8) if, and only if, |ulr)|P =
Qy{? ()| 9. Hence, we have the following relation for the determination
of the constant C by means of (1.8):

t
Scwp; 7O@)dt =1 or c=A-P(, g, @)
to

The control functions u(r) can, therefore, be found by means of the
formula

u (x) = 29 (¢, g) 7@ (x)] P sign 7@ (x) (1.9)

The optimal control u(t, p) can be found, as has already been pointed
out, by setting A(t, q) = 1 in (1.9). Hence, it will have the form

2

u(t, p)=(1OF™ (1) b(1))’sign (1OF 1) b(t)). (1.10)

2. Let us consider the behavior of the function A(t, q) as g » 1.
This has to be done for the investigation of the optimal control u(t, p)
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and the optimal time T(p) as p -+ .

Lenma 2.1, If %g, t are fixed and g+ 1, then the function A(t, q) has
a limit A(t), and

1 . .
= minA (¢, 1, 1) it (lrg) == —1 (2.1

Proof. Let 9, be an arbitrary decreasing sequence, and let lim g,=1
as s » oo,

If
1 @ ]
A (t’ qs) :A(t’ qﬁ 7(q$)) if (l(qs)xo) i (2.2)
{ . ) N
oy = AE LYY i e =t (2.3)
then
Aty gs 79 )KA(, 4 1°) (2.4)

But if ¢+ < r < t we have by the relation (1.5) that |yY°(r)| < ¥,
where N is a constant, Hence

Aty g5, T <M, (2.5)
where N; is a constant (for fixed t).

The function y(r) satisfies condition (A). One can show in this case
that the sequence 1{9s) is bounded uniformly in s.

Hence, there exists a subsequence l(q'ﬂ) of the sequence 1(95) such
that

lim [(%em) — [©) a8 m — oo, ({zg) = —1

Furthermore, it is obvious that for fixed a the function Iy(q")(r)lqsn
is continuous in r, and that as = » =

L) () B — [y @ (5)]

uniformly in r. Therefore, the limiting process may be applied to the in-
equality

A, qem, T(qsm)) KA gomy ¥°)
we obtain
A, 1oy®Y<CA(, 1, 79) (2.6)

On the other hand, we have

A@, 1, v)y=minA (@ 1, 7) it (lzy) = —1
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Hence, the following inequality holds:

A, L, Y >A(@, 1, 1°) (2.7
From {(2.6) and (2.8) it follows that

A, 1, y®)=A(t, 1, 1°)

This means, however, that the function y(l)(r) is a minimizing element
under condition (lx,) = — 1. The above argument is valid for an arbitrary
sequence A(t, qs) and its subsequences. Hence, we have proved that
lim A(t, g) = A(t) a5 ¢ > 1.

Let u(t) be an optimal control and T be an optimal contrel time for
the initial values N with the restriction (1.3).

If the optimal problem is considered with the restriction (1.2), then,
as above, the optimal control and optimal time will be denoted by
ul{r, p) T(p) respectively,

The following assertion is true:

Theorea 2.1. For each given ¢ > 0 there exists an N > O such that for
every p > N the inequalities

[T (p)—T| <k, mesE (|u(z, pp—u(x)|>=o)<e
are valid.*

Proof. Since for a fixed % the function A(#) is continuous and mono-
tone decreasing in ¢, it follows that for each ¢ > 0 there exists a
ﬁ > 0 such that the following inequalities hold:

Mt—e)> 148, Me+e)<1—B

Further, for fixed xgs the function A(t, ¢) is continuous from the

Hence, for each given B‘> 0 there exists a 81 > 0 such that for
g—- 1<38,; we have

Mete =2t <B  [Mt—c ) —A(t—e)| <P

* The symbol mes E(| u(r, p) — u(r)|> 0) means the measure of the set
on which the inequality |u(r, p) - u(r)|> o holds, where o is an
arbitrary positive number.
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From the given inequalities and from the continuity in ¢ (for fixed
q) of the function A(t, ¢) it now follows that if

g—1< 8, (1'> 1_1>
then there exists a T(p) for which
T (p), ) =1, [ T(p—T|<e

Next, we show that
3 o
mes £ (Ju(z, p) —u(?)|>0) <e if p>g—p, ©6>0

In the works [ 2-6] it has been proved that the function u(r) has the
form

u () = sign (I°F 71 (=) b (7)) <7<t + 1)
Let us consider the set of vectors l(q) from Formula (1.10).

As was pointed out in the proof of Lemma (2.1), the set of vectors
l(q) is uniformly bounded in g. Furthermore, it is also uniformly bounded
in T(p) [10].

If l(qs) is a convergent sequence and if
liml ) =9 a5 s-500

then one can show (see proof of Lemma 2.1) that the function l(l)F(“'l)
(r)b(r) is a minimizing element under the condition

It is known [9 ] that

sign ({WF ™1 () b (7)) = sign(I°F 1 (z) b (=))

Therefore, for every ¢; neighborhood (e < €) of the zeros of the
function (1° F~ l(r)b(r)) there exists a 8 > 0 such that for ¢, — 1< 8
the zeros of the function (l(qs)F"l(r)b(r)) will lie in this € neighbor-
hood of the zeros of the function (1° F~ lar)b(r)).

Outside such an cl-neighborhood the signs of the functions (l(QS’F"
(r)yb(r)) and (1°F~ ! (r)b(r)) coincide.

Since we have qs/ps < 53, where 33 is a small positive number, it
follows that

mesE(lu(z, p)— u ()| >0) <& if gs — 1 < o3
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Thus we obtain, finally

IT(p)—T|<e, mesE(u(s, p)—u()|>c) <=

provided p > N (N can be chosen to be the larger one of the numbers
8,/(3; ~ 1) and §,;/(3; = 1)). The theorem has thus been proved.

It is possible to prove that all the arguments of Sections 1 and 2

are valid for the case of several control functions of Equation (1).
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